Scientists Build Tiny Biological Robots from Human Cells

The multicellular bots move around and help heal ‘wounds’ created in cultured neurons

three examples of Anthrobots with hair-like cilia in yellow

Researchers at Tufts have created tiny biological robots that they call Anthrobots from human tracheal cells that can move across a surface and have been found to encourage the growth of neurons across a region of damage in a lab dish.

The multicellular robots, ranging in size from the width of a human hair to the point of a sharpened pencil, were made to self-assemble and shown to have a remarkable healing effect on other cells. The discovery is a starting point for the researchers’ vision to use patient-derived biobots as new therapeutic tools for regeneration, healing, and treatment of disease.

The work follows from earlier research in the laboratories of Michael Levin, Vannevar Bush Professor of Biology, and Josh Bongard at the University of Vermont, in which they created Xenobots, multicellular biological robots capable of navigating passageways, collecting material, recording information, healing themselves from injury, and even replicating for a few cycles on their own. At the time, researchers did not know if these capabilities were dependent on their being derived from an amphibian embryo, or if biobots could be constructed from cells of other species.

In the study in Advanced Science, Levin, along with Ph.D. student Gizem Gumuskaya, discovered that bots can be created from adult human cells without any genetic modification and demonstrated that they have some capabilities beyond what was observed with the Xenobots.

The discovery starts to answer a broader question that the lab has posed—what are the rules that govern how cells assemble and work together in the body, and can the cells be taken out of their natural context and recombined into different “body plans” to carry out other functions by design?

In this case, researchers gave human cells, after decades of quiet life in the trachea, a chance to reboot and find ways of creating new structures and tasks. The researchers found that not only could the cells create new multicellular shapes, but they could move in different ways over a surface of human neurons grown in a lab dish and encourage new growth to fill in gaps caused by scratching the layer of neuronal cells.

“It is fascinating and completely unexpected that normal patient tracheal cells, without modifying their DNA, can move on their own and encourage neuron growth across a region of damage,” said Levin. “We’re now looking at how the healing mechanism works, and asking what else these constructs can do.”

The advantages of using human cells include the ability to construct bots from a patient’s own cells to perform therapeutic work without the risk of triggering an immune response or requiring immunosuppressants. They only last a few weeks before breaking down, and so can easily be re-absorbed into the body after their work is done.